- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Medina, Nicolas (2)
-
Aerts, Conny (1)
-
Almeida, Andrés (1)
-
Anguiano, Borja (1)
-
Beaton, Rachael L. (1)
-
Borissova, Jura (1)
-
Chojnowski, S. D. (1)
-
Cohen, Roger (1)
-
Covey, Kevin R. (1)
-
De Lee, Nathan (1)
-
Donor, John (1)
-
Drout, Maria R. (1)
-
Espíndola, Anahí (1)
-
Fernández-Trincado, José G. (1)
-
Frinchaboy, Peter M. (1)
-
Geisler, Doug (1)
-
Hasselquist, Sten (1)
-
Hayes, Christian R. (1)
-
Johnson, Jennifer A. (1)
-
Kollmeier, Juna A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PremiseThe genusCalceolaria(Calceolariaceae) is emblematic of the Andes, is hypothesized to have originated as a recent, rapid radiation, and has important taxonomic needs. Additionally, the genus is a model for the study of specialized pollination systems, as its flowers are nectarless and many offer floral oils as a pollination reward collected by specialist bees. Despite their evolutionary and ecological significance, obtaining a resolved phylogeny for the group has proved difficult. To address this challenge, we present a new bait set for targeted sequencing of nuclear loci in Calceolariaceae and close relatives. MethodsWe developed a bioinformatic workflow to use incomplete, low‐coverage genomes of 10Calceolariaspecies to identify single‐copy loci suitable for phylogenetic studies and design baits for targeted sequencing. ResultsOur approach resulted in the identification of 809 single‐copy loci (733 noncoding and 76 coding regions) and the development of 39,937 baits, which we validated in silico (10 specimens) and in vitro (29 Calceolariaceae and six outgroups). In both cases, the data allowed us to recover robust phylogenetic estimates. DiscussionOur results demonstrate the appropriateness of the bait set for sequencing recent and historic specimens of Calceolariaceae and close relatives, and open new doors for further investigation of the evolutionary history of this hyperdiverse genus.more » « less
-
Santana, Felipe A.; Beaton, Rachael L.; Covey, Kevin R.; O’Connell, Julia E.; Longa-Peña, Penélope; Cohen, Roger; Fernández-Trincado, José G.; Hayes, Christian R.; Zasowski, Gail; Sobeck, Jennifer S.; et al (, The Astronomical Journal)Abstract APOGEE is a high-resolution ( R ∼ 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.more » « less
An official website of the United States government
